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Abstract Article Info
Potassium (K) accounts for around 2.5% of the lithosphere. K is present as feldspar Received: 05 April 2024
(orthoclase and microcline) and mica (biotite and muscovite) among all soil minerals. Accepted: 12 May 2024

In agriculture, replenishing potassium remains challenging because of its dependence Available Online: 20 June 2025

on fertilizer. Biofertilizers become alternatives to chemical fertilizers to enhance plant
nutrition and productivity as they improve soil fertility in an environmental friendly
and cost-effective manner. The present study, a novel exploration, aims to identify and Biofertilizers, Ceramic soil, Potassium
select microorganisms from the soils used in the ceramic industry that may solubilize solubilizers, Molecular characterization,

Keywords

potassium. The potential K solubilizers were determined by morphological, Enterobacter hormacchei.
biochemical and molecular characterization through 16S rRNA sequence analysis of
the Enterobacter hormaechei (KSB -8).
Introduction Bacterial 16S, 23S, and 5S rRNA genes are typically

organized as a co-transcribed operon. The 16S rRNA
Phylogeny is the study of the evolutionary history of  sequence has hypervariable regions, where sequences
organisms. Cladistic relationships indicate the degree of  have diverged over evolutionary time (Ludwig and
relatedness between microorganisms, as shown by  Schleifer, 1994).
pathways of ancestry (Cain and Harrison, 1960). Recent
advances in genomic analysis have contributed a great =~ Some other molecular methods are also available for
deal to understanding the structure and function of  evaluating phylogenetic relationships, e.g., DNA-DNA
microbial communities. Identifying an organism by  and DNA-rRNA hybridization, 5S rRNA and protein
partial or whole genome sequencing has developed as a  sequencing, 16S rRNA oligonucleotide cataloging,
consistent and steadfast method. The function of the 16S  enzymological patterning, etc. The identification of
rRNA gene over time has not changed, suggesting that  organisms by 16S rRNA gene sequencing helps show the
random sequence changes are a more accurate measure  minor differences in the closely related members of the
of evolution. This also helps in estimating the rates of  species. Reproducible and reliable computational tools
species divergence among the bacteria. In bacteria, the  are available to analyse the sequences of newly isolated
small ribosomal subunit contains the 16S rRNA.  strains. Constructing a phylogenetic tree using BLAST
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results can easily deduce the evolutionary relationships.
The wvariability and divergence can be estimated by
performing multiple sequence alignments using Clustal
W. It has been demonstrated that 16S rRNA gene
sequence data on an individual strain with the nearest
neighbour exhibiting a similarity score of less than 97%
represents a new species.

The 16S rRNA gene sequence can further be used to
predict the secondary structure of rRNA. The 16S rRNA
plays an essential role during protein synthesis. The
helices in the molecule bind to the proteins present in the
small subunit of the ribosome, and the loops bind to 5S
rRNA present in the larger subunit of the ribosome. We
can predict the secondary structure using the Gene Bee
package and Vienna RNA package for RNA secondary
structure prediction and comparison. Secondary structure
in RNA is the list of base pairs that occur in a three-
dimensional RNA structure. According to the theory of
thermodynamics, the optimal folding of an RNA
sequence is that of minimum the total free energy
(Lyngso et al., 1999). Thermodynamics tells us that the
folding of an RNA sequence in the real world is a
probability distribution over all possible structures,
where the probability of a specific structure is
proportional to an exponential of the free energy of the
structure.

Knowledge of the three-dimensional structure of
ribosomal proteins and rRNA molecules will help
understand the mechanism of interactions between these
constituent molecules and, in turn, shed light on the
function of ribosomes (Kolaskar et al., 1985).

Materials and Methods

Molecular Characterization and Identification of
KSB-8

Bacterial strain selected in this study was the higher
potassium solubilizer from the all-isolated potassium
solubilizers from ceramic industry soil of Gujarat, India.
The medium used for the isolation and screening of the
potassium solubilizers was Aleksandrov agar medium
constituted 1% glucose, 0.5% Yeast extract, 0.05%
MgSo04.7H,0, 0.0005% FeCls, 0.01% CaCOs, 0.2%
CaPos and 0.5% Feldspar, 3 % agar and pH-6.5
(Sugumaran and Janartham, 2007). The selected bacterial
strain was identified as Enterobacter hormaechei (KSB-
8) using standard cultural, morphological and
biochemical methodology, but its identity was re-
evaluated by 16S rRNA gene sequence analysis.
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The 16S rRNA sequencing for bacterial isolate KSB-8
was carried out, DNA was isolated from the pure culture
of isolates. Their quality was evaluated on 1.2% Agarose
Gel (Sambrook et al., 1989) a fragment of 16S rRNA
from the above-isolated DNA.

The PCR amplicon was purified to remove contaminants.
Forward and reverse DNA sequencing reaction of PCR
amplicon was carried out with primers using Micro
Sequencer 16S rDNA sequencing kit on Applied
Biosystem 3130/3130xl genetic analyser. Using aligner
software, a consensus sequence of the 16S rRNA gene
was generated from forward and reverse sequence data.

The 16S rRNA sequence obtained was BLAST searched
to find out the other closely related species members.
[BLASTn (Version 2.2.26) available on the site
http://www.ncbi.nlm.nih.gov/Blast (Johnson et al,
2008)]. Sequence data for related species were retrieved,
and multiple sequence alignment was performed using
the Clustal W program to validate the uniqueness of our
sequence (Higgins er al, 1996). Our isolates'
hypervariable nucleic acid region was compared with
100 closely related sequences. Using the BLAST
package, the phylogenetic tree was constructed via the
neighbour-joining algorithm (Saitou and Nei, 1987).

Elucidation of rRNA Secondary Structure for KSB-8

The sequence obtained for KSB-8 was used to predict the
secondary structure of RNA (Woese ef al., 1980). The
secondary structures of rRNA prepared using the
multiple sequence alignment result in better results. It
checks the conserved region through all the sequences
and then gives an appropriate structure. The structures
were validated by preparing a secondary structure using
10 closely related sequences of the BLAST result
(Lorenz et al., 2011) using the Vienna RNA Website. On
comparing the structure of our isolates with the structure
generated by using ten closely related sequences, we
found the presence of different similar helical regions.
These regions must participate in binding proteins in the
ribosome and are conserved.

Results and Discussion

Molecular Characterization and Identification of
KSB-8

The 16S rRNA genetic marker is present in almost all
bacteria with only minute changes, which help
differentiate the cultured isolate from its closely related
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sequences. In the study, 16S rRNA gene sequence
analysis was carried out for KSB-8, the best potassium-
solubilizing bacterial isolate. The sequence of KSB-8 is
shown in Fig-1. The sequence data of isolate KSB-8 is
deposited in the Gene bank Database under the accession
number JQ715421.

The obtained sequences of each isolate were compared
with deposited sequences in the NCBI database, using
BLAST as a search tool. In most cases, the high identity
values obtained ensured that KSB- 8 isolate belongs to
Enterobacter spp. with identity values above 98%. The
output result of BLAST performed for KSB-8.

The BLASTn produced for KSB-8 bacterial culture
showed significant alignment to 98% similarity with
Enterobacter spp. The identity score for KSB-8 is
262/267 with Enterobacter hormaechei SFK-2 (Fig-2).

Bergey’s classification of prokaryotes, well-recognized
and widely used for bacterial identification, is based on
the phylogeny of prokaryotes from the 16S rRNA gene.
If the sequence of 16S rRNA gene of an unknown
organism is >95% similar to those in the GenBank
(Clarridge, 2004), it is generally considered the same
genus. If the 16S rRNA gene sequence is >97% identical
to those sequences of any cultures in the Gen Back, it
should be considered as the same species but may be a
different strain (Embley and Stackebrandt, 1994).

The multiple sequence alignment of 10 nearby strains of
the NCBI gene bank was done using Clustal W tool for
numerous and pair-wise sequence alignments as well as
phylogenetic tree construction aligning of sequences
with the nucleic acids of KSB-8 to other nearby strains
of NCBI, revealed that the sequence of KSB-8 isolates
shares 98% similarity with the Enterobacter hormaechei.
The phylogenetic tree of KSB-8 with nearby clusters is
shown in Fig. 3.

Morales-Gracia et al., (2011) isolated strain UAPS03001
from the rhizosphere of “Rojo—Criollo” maize.
Phenotypic tests showed 95 % similarity to Enterobacter
cloacae, and sequence comparison of 16s TDNA gene
showed 96.3 % identity with Enterobacter species.

They studied the effect of Enterobacter spp. Inoculation
in laboratory conditions was reported after twenty days
of inoculation, and treated plantlets showed more
biomass than non-inoculated ones. In field conditions,
kernel biomass was also more incredible than non-
inoculated plants.
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Patel et al., (2008) reported Citrobacter sp. DHRSS, a
facultative anaerobe belonging to the Enterobacteriaceae
family from the rhizosphere of sugarcane, uses stringent
buffered conditions with sucrose as the C -source and
rock phosphate as the P source to obtain a PSB that can
exploit the sucrose and fructose with the intension of P
solubilization.

In both cases, it isolates Citrobacter sp. DHRSS showed
similar growth, acidification, and P solubilization
properties. PCR amplification of the rRNA gene and
sequence analysis identified this bacterium as
Citrobacter sp. DHRSS.

Rani et al., (2011) isolated 65 microorganisms from
different rhizospheric soils. These isolates were further
identified based on 16sRNA sequencing and PCR-RFLP
analysis and found to be Enterobacter and Bacillus.

Isolates showed PGPR activities like IAA production,
ACC deaminase abilities, antagonistic activities against
fungal pathogens, phosphate solubilization activation,
and mineral uptake promotion. The isolates, Bacillus and
Enterobacter, were inoculated with pigeon peas and
found to increase in shoot length, root length, dry matter,
nodule number, and nodule mass of pigeon peas.

Ogbo et al, (2012) isolated plant growth-promoting
Enterobacter spp. from the roots of maize, and 16 rDNA
identification of isolates revealed to be the closest match
at (99.4 %) with Enterobacter asburiae. It showed plant
growth-promoting activity by producing indole-3-acetic,
plant hydrolyzing enzymes, pectinase, cellulose, and
ammonia in vitro.

Strain KSB-8 was 98% similar to FEnterobacter spp.
Thus, it should be a member of the genus Enterobacter
but is a new species. In addition, the Minimum Evolution
phylogenetic tree also showed that KSB-8 should be a
member of the genus Enterobacter.

Elucidation of rRNA Secondary Structure of
Bacterial Isolate KSB-8

The secondary structure of the rRNA gene sequence can
be predicted using various software like Gene Bee,
Vienna, RNA structure, and manifold. A secondary
structure model for 16S ribosomal RNA proposed for E.
coli and B. brevis was among the early reports based on
comparative sequence analysis, chemical modification
studies, and nuclease susceptibility data (Woese et al.,
1980).
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Figure.1 16S rRNA sequence of the Bacterial Isolate KSB-8.

>Enterobacter hormaechei

GGATACAARA
GACACTCTAC
GGAACGTATG
TTATGGATTC
GGTCCGCTTG
AGGTGGGTAG
CCTTCCTCCA
GCTGGCAACA
TTTCACAACA
CGAAGGCACC
AAGGTTCTTC
GGGCCCCCGT
GCGGTCGACT
CTCCAAGTCG
TTTGCTCCCC
GCCCTCGCCA
TTTCGAATGC
CGGACCGCCG
CCCTCCCTAT
TTCTGCGCGT

AAACTCTCGT
CGTCTTCTGG
GTTTTTTTTT
TAGTTGCAAA
CTCTCGCGAG
CCCTACTCGT
GTTTATCACT
ARGGAGAAGG
CGAGCTGACG
AAAGCATCTC
GCGTTGCATC
CAATTCATTT
TAACGCGTTA
ACATCGTTTA
ACGCTTTCTC
CCGGTATTCC
GGTTCCCAGG
GCGTGCGCTT
TTACCTGCGG

GACATGGTGA
TTGCCCGTTT
TCAAAARAARRA
CTCCAATCCG
GTCGCTTCTC
AAGGGCCATG
GGCAGTCTCC
GTTGCGCTCG
ACAGCCATGC
TGCTAAGTTC
GAAATAANCC
GAGTTTTAAC
GCTCCGGAAG
CGGCGTGAAC
ACCTGAGCGT
TCCAGATCTC
TGGAGCGCGG
TACGGCCCAG
CTGCTGGCAC

CGAGAGATAG
GGGGGAGAGG
GAAAACAAGC
GACGACTACG
TTTGTATGCG
ATGACTTGAC
TTTGAGTTCC
TTGCGGGACT
AGCACCTGTC
TCTGGATGTC
ACATGCTCCA
CTTGCGGCCG
CCACGCCTCA
TACCAGGGTA
CAGTCTTTGT
TACTCAATTC
GGATTTCACA
TAATTCTATG
GGAGTTAAAC

GGAAAAGGGA
AGAAAGCCCG
TTTTTCTTTT
CATTTTATGA
CCATTGTAGC
GTCATCCCCA
CGGCCGGACC
TAACCCAACA
TCAAAGTTCC
AAGAGTAGGT
CCGCTTGTGC
TACTCCCCAG
CGGGCACAAC
TCTCATCCTG
CCAGGGGGCC
AGCGCTGCAC
TACGACTTGA
AACGCTGGAG
CGGTGCTTCT

SFK-2.

Figure.2 Multiple sequence alignment of KSB-8 Isolate (Enterobacter hormaechei) with Enterobacter hormaechei
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Figure.3 Phylogenetic tree depicting the position of KSB-8 (Enterobacter hormaechei) separated from nearby clusters.
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Figure.4 MFE Secondary structure of rRNA for KSB-8 (Enterobacter hormaechei).

Sequence display options
1 b I vV oF MFE secondary structure

@ Plain Sequence
O MNo Segquence

Figure.5 Centroid Secondary structure of rRNA for KSB-8 (Enterobacter hormaechei).
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A model was proposed (Ignacio, 1971 and Ignacio,
1973) to calculate a folded RNA molecule's stability (in
terms of free energy) by adding independent
contributions from base pair stacking and loop
destabilizing terms from the secondary structure. This
model has proven a good approximation of the forces
governing RNA structure formation, thus allowing fair
predictions of real structures by determining the most
stable structures in the model of a given sequence.

The RNA secondary structures are predicted to provide
the basic information for phylogenetic analysis (Fig.3).
The secondary structural features of KSB-8 regions, as
shown in the figure, are analyzed based on the conserved
stems and loops, which, in order of preference, were
interior loop, hairpin loop and exterior loop in all the
isolates.

The secondary structures yielded homologous models
that grouped the conserved features. Generally, RNA
secondary structure prediction programs rely on free
energy minimization using nearest neighbour parameters
to predict the overall structural stability in terms of Gibbs
free energy at 37°C. The observed similarities at the
secondary structural level are further reflected at the
energy level (—AG). However, the difference in their
topology is due to differences in nucleotide sequence
length.

The optimal secondary structure of Enterobacter
hormaechei (KSB-8) is studied in dot-bracket notation
and free energy prediction. The minimum free energy of
the secondary structure is -313.40 kcal/mol, and from the
thermodynamic ensemble prediction, the free energy is -
328.81 kcal/mol, and the ensemble diversity is 259.53.
The frequency of the ensemble's minimum free energy
(MFE) structure is 0.00 % (Fig-4). When the centroid
secondary structure is studied in dot-bracket notation, the
minimum free energy is 209.10 kcal/mol (Fig-5). The
secondary structure has 15 Hairpin loops, two bulk
loops, 4 Junction loops, two stem loops, 23 interior
loops, and 1 Pseudoknot that may bind to 23S rRNA in
the larger subunit of the ribosome.

All rRNAs have identical functions because all are
involved in the production of proteins. The overall three-
dimensional rRNA structure that corresponds to this
function shows only minor but in highly significant
variation. However, within this, nearly constant overall
structure, molecular sequences in most molecule regions
are continually evolving and changing at the level of
their primary structure while maintaining homologous
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secondary and tertiary structures, which never alters
molecular function.

Conclusion

The potential K solubilizers were identified by molecular
identification: 16S rRNA analysis of the KSB-8 isolate
identified Enterobacter hormaechei, KSB-8 bacterial
culture shows significant alignment to 98% similarity
with Enterobacter hormaechei. Thus, bacterial isolate
KSB-8 belongs to Enterobacter spp., and the sequences
are submitted to the Gene Bank database. The K-
releasing bacterial isolated and identified may be used in
the amelioration of K-deficient soils and further research
can elucidate how these bacteria promoted plant growth
and optimize their applications in different agricultural
systems and may be used to an alternative mean of K
nutrition improvement for use in agriculture.
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